Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays.
نویسندگان
چکیده
Alpha-crystallin is a member of the small heat-shock protein family and functions like a molecular chaperone, and may thus help in maintaining the transparency of the eye lens by protecting the lens proteins from various stress conditions. Non-enzymic glycation of long-lived proteins has been implicated in several age- and diabetes-related complications, including cataract. Dicarbonyl compounds such as methylglyoxal and glyoxal have been identified as the predominant source for the formation of advanced glycation end-products in various tissues including the lens. We have investigated the effect of non-enzymic browning of alpha-crystallin by reactive dicarbonyls on its molecular chaperone-like function. Non-enzymic browning of bovine alpha-crystallin in vitro caused, along with altered secondary and tertiary structures, cross-linking and high-molecular-mass aggregation. Notwithstanding these structural changes, methylglyoxal- and glyoxal-modified alpha-crystallin showed enhanced anti-aggregation activity in various in vitro aggregation assays. Paradoxically, increased chaperone-like activity of modified alpha-crystallin was not associated with increased surface hydrophobicity and rather showed less 8-anilinonaphthalene-l-sulphonic acid binding. In contrast, the chaperone-like function of modified alpha-crystallin was found to be reduced in assays that monitor the prevention of enzyme inactivation by UV-B and heat. Moreover, incubation of bovine lens with methylglyoxal in organ culture resulted in cataract formation with accumulation of advanced glycation end-products and recovery of alpha-crystallin in high proportions in the insoluble fraction. Furthermore, soluble alpha-crystallin from methylglyoxal-treated lenses showed decreased chaperone-like activity. Thus, in addition to describing the effects of methylglyoxal and glyoxal on structure and chaperone-like activity, our studies also bring out an important caveat of aggregation assays in the context of the chaperone function of alpha-crystallin.
منابع مشابه
Chaperone-like activity and surface hydrophobicity of 70S ribosome.
Ribosomes have been shown to mediate refolding of proteins in vitro. In order to understand the mechanism of action, we have explored the 70S ribosome surface for hydrophobicity, one of the important aspects in chaperone-target protein interaction. We find that the 70S ribosome displays significant hydrophobicity on its surface when probed with the hydrophobic fluorophore 8-anilino-1-naphthalen...
متن کاملTemperature dependent chaperone-like activity of alpha-crystallin.
Alpha-crystallin, a multimeric protein present in the eye lens, is known to have chaperone-like activity in preventing the aggregation of enzymes and other crystallins. We have studied the chaperone-like activity of this protein towards the aggregation of insulin B chain, induced by reducing the interchain disulphide bond with dithiothreitol. At room temperature, there is no detectable protecti...
متن کاملEffect of glycation on α-crystallin structure and chaperone-like function
The chaperone-like activity of α-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of α-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone funct...
متن کاملChaperone-like activity and temperature-induced structural changes of alpha-crystallin.
alpha-Crystallin is known to exhibit chaperone-like activity. We have studied its chaperone-like activity toward the aggregation of betaL-crystallin upon refolding of this protein from its unfolded state in guanidinium chloride. The chaperone-like activity of alpha-crystallin is less pronounced below 30 degrees C and is enhanced above this temperature. The plot of percentage protection as a fun...
متن کاملαA-Crystallin–Derived Mini-Chaperone Modulates Stability and Function of Cataract Causing αAG98R-Crystallin
BACKGROUND A substitution mutation in human αA-crystallin (αAG98R) is associated with autosomal dominant cataract. The recombinant mutant αAG98R protein exhibits altered structure, substrate-dependent chaperone activity, impaired oligomer stability and aggregation on prolonged incubation at 37 °C. Our previous studies have shown that αA-crystallin-derived mini-chaperone (DFVIFLDVKHFSPEDLTVK) fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 379 Pt 2 شماره
صفحات -
تاریخ انتشار 2004